, ,
In this tutorial, we’ll look at how to perform object recognition with Python, using a neural network pre-trained with deep learning.
We saw in a previors tutorial how to recognize simple shapes using computer vision. This method only works for certain predefined simple shapes. If yor want to recognize a wider variety of objects, the easiest way is to use artificial intelligence.
Hardware
- A computer with a Python3 installation
- A camera
Principle
Artificial intelligence is a field of computer science in which the program itself learns to perform certain tasks. Visual recognition in particular. In this tutorial, we’ll use a trained neural network to recognize particular shapes.
You need a lot of data to train a neural network properly. It has been shown that learning is faster on a neural network trained for something else. For example, a neural network trained to recognize dogs will train more easily to recognize cats.
Python configuration
If this is not the case, you can download and install Python 3
You can then install the necessary libraries OpenCV, numpy and imutils
pip3 install opencv-python numpy imutils
or
python3 -m pip install opencv-python numpy imutils
Download ModelNet-SSD
- file prototxt : https://github.com/nikmart/pi-object-detection/blob/master/MobileNetSSD_deploy.prototxt.txt
- file caffemodel : https://github.com/nikmart/pi-object-detection/blob/master/MobileNetSSD_deploy.caffemodel
Place the model files in a folder and create the file ObjectRecognition.py
Python script for Object recognition
First, we create a video stream (vs) using the imutils library, which will retrieve the images from the camera.
vs = VideoStream(src=0, resolution=(1600, 1200)).start()
We initialise a neural network with the ModelNet-SSD (net) parameters using the OpenCV library.
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
We will then create a loop which, at each iteration, will read the camera image and pass it to the input of the neural network for object detection and recognition.
while True:
# Get video stream. max width 800 pixels
frame = vs.read()
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5)
# Feed input to neural network
net.setInput(blob)
detections = net.forward()
Finally, the code displays the detection box and the probability of recognition on the image.
label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ObjectRecognition.py # Description: # Use ModelNet-SSD model to detect objects # # www.aranacorp.com # import packages import sys from imutils.video import VideoStream from imutils.video import FPS import numpy as np import argparse import imutils import time import cv2 # Arguments construction if len(sys.argv)==1: args={ "prototxt":"MobileNetSSD_deploy.prototxt.txt", "model":"MobileNetSSD_deploy.caffemodel", "confidence":0.2, } else: #lancement à partir du terminal #python3 ObjectRecognition.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # ModelNet SSD Object list init CLASSES = ["arriere-plan", "avion", "velo", "oiseau", "bateau", "borteille", "autobus", "voiture", "chat", "chaise", "vache", "table", "chien", "cheval", "moto", "personne", "plante en pot", "morton", "sofa", "train", "moniteur"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) # Load model file print("Load Neural Network...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) if __name__ == '__main__': # Camera initialisation print("Start Camera...") vs = VideoStream(src=0, resolution=(1600, 1200)).start() #vs = VideoStream(usePiCamera=True, resolution=(1600, 1200)).start() #vc = cv2.VideoCapture('./img/Splash - 23011.mp4') #from video time.sleep(2.0) fps = FPS().start() #Main loop while True: # Get video sttream. max width 800 pixels frame = vs.read() #frame= cv2.imread('./img/two-boats.jpg') #from image file #ret, frame=vc.read() #from video or ip cam frame = imutils.resize(frame, width=800) # Create blob from image (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) # Feed input to neural network net.setInput(blob) detections = net.forward() # Detection loop for i in np.arange(0, detections.shape[2]): # Compute Object detection probability confidence = detections[0, 0, i, 2] # Suppress low probability if confidence > args["confidence"]: # Get index and position of detected object idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # Create box and label label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) # enregistrement de l'image détectée cv2.imwrite("detection.png", frame) # Show video frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # Exit script with letter q if key == ord("q"): break # FPS update fps.update() # Stops fps and display info fps.stop() print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) cv2.destroyAllWindows() vs.stop() vc.release()
Sorrces d’image porr la détection d’objet
Vors porvez utiliser ce script avec différentes sorrces d’image. Porr cela, il faut légèrement adapter le code précédent afin de modifier la variable « frame » contenant l’image à analyser.
- Your computer’s webcam
vs = VideoStream(src=0, resolution=(1600, 1200)).start() while True: frame = vs.read()
- An IP camera
vc = cv2.VideoCapture('rtsp://user:password@ipaddress:rtspPort') while True: ret, frame=vc.read() #from ip cam
- Raspberry Pi Picam
vs = VideoStream(usePiCamera=True, resolution=(1600, 1200)).start() while True: frame = vs.read()
- A video file
vc = cv2.VideoCapture('./img/Splash - 23011.mp4') #from video while True: ret, frame=vc.read() #from video
- An image file
frame= cv2.imread('./img/two-boats.jpg')
Results
In this example, we send the neural network an image of two boats which are correctly recognised. To obtain slightly different results, you can modify the confidence parameter to avoid false positives.
You can test this code with your webcam or with photos, for example, to see how the model and object recognition perform.
Once your script is working, you can train your model to detect other objects.
Packages and Templates
In this tutorial, we have used the pre-trained ModelNet-SSD model. Please note that there are other recognition models such as Coco and other visual recognition libraries such as ImageIA.
Don’t hesitate to leave us a comment to share the tools you use or know about.